

СОВРЕМЕННЫЕ РЕШЕНИЯ ДЛЯ КЛАССИЧЕСКОЙ КОАГУЛОМЕТРИИ

Немецкая точность и надежность, обеспечивающие комфорт и скорость исследований

Производитель Behnk Elektronik

Имя Behnk Elektronik широко известно во всем мире медицинских технологий и является гарантом качества оборудования для лабораторной диагностики и точности результатов.

Компания более 30 лет занимается разработкой и производством автоматических и полуавтоматических анализаторов для оценки гемостаза.

Офис и производство компании Kommanditgesellschaft Behnk Elektronik GmbH & Co. расположены в г. Гамбург, Германия.

Основной девиз компании Behnk Elektronik: «Принцип в простоте, инновации в деталях»

Руководствуясь данным подходом, инженеры компании постоянно разрабатывают инновационное и простое в эксплуатации оборудование.

История Behnk Elektronik

1980 – год основания компании Kommanditgesellschaft Behnk Elektronik GmbH & Co. 1980-е – первые полуавтоматические коагулометры.

1988 – начало работы полуавтоматических коагулометров в лабораториях СССР.

1993 — первый автоматический коагулометр серии Thrombolyzer.

2009 – первые высокопроизводительные автоматические коагулометры серии Thrombolyzer.

2018 – разработка нового автоматического коагулометра конвейерного типа.

Полуавтоматические коагулометры

Преимущества анализаторов Thrombotimer и Thrombostat:

- Простые в работе
- Открытая реагентная система
- Не требуют обслуживания

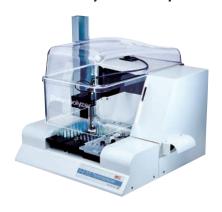
Thrombotimer 1

Thrombotimer 2

Thrombotimer 4

Основные характеристики	Thrombotimer 1	Thrombotimer 2	Thrombotimer 4	
Измерительные каналы, шт.	1	2	4	
Позиции для инкубации, шт.	2	4	8	
Позиции для реагентов, шт.	2	2	4	
Метод детекции сгустка	Оптико-механический			
Результаты измерений	В сек, %, МНО, мг/дл, г/л			
Тип образца	Плазма			

Thrombostat 1


Основные характеристики	Thrombostat 1	Thrombostat 2		
Измерительные каналы, шт.	1	2		
Позиции для инкубации, шт.	5	4		
Позиции для реагентов, шт.	1-5	1		
Результаты измерений	В сек, МНО	В сек, %, МНО, мг/дл, г/л		
Метод детекции сгустка	Механический			
Тип образца	Плазма, цельная кровь			

Автоматические коагулометры

Thrombolyzer Compact X

Thrombolyzer XR

Thrombolyzer XRM

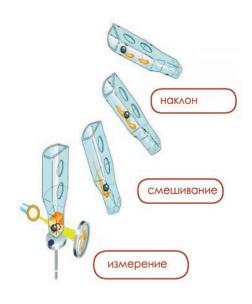
Преимущества анализаторов серии Thrombolyzer:

- Надежные и точные
- Открытая реагентная система
- Русифицированное меню и простое управление
- Не требуется регулярное обслуживание
- Широкая панель тестов
- Приборы, проверенные временем

Основные характеристики	Compact X	XR	XRM	
Производительность, т/ч	160	160	320	
Реакционный объем, мкл	150	150	150	
Позиции для пациентов, шт.	36	31	62	
Позиции для реагентов, шт.	16	16	27	
Метод детекции сгустка	Оптико-механический			
Операционная система	LINUX*			
Дозагрузка образцов и реагентов во время проведения исследований	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Подключение к ЛИС	V	V	V	
Измерительные каналы, кол-во	4	4	8	

^{*} Linux – специализированная операционная система повышенной надежности, совместимая со стандартными решениями

Коагулометр Thrombolyzer



XRM (вид сверху)

Оптико-механический метод

Анализаторы серии Thrombolyzer – одни из немногих автоматических коагулометров, в основе измерений которых лежит инновационный оптикомеханический метод детекции сгустка. Принцип данного метода заключается в регистрации изменения оптической плотности по мере образования фибринового сгустка.

Анализаторы серии Thrombolyzer работают по запатентованному методу «перевернутых кювет». Инкубирование отдельных капель пробы и реагента происходит одновременно в единой кювете, которая располагается горизонтально. Затем начинается наклон кюветы. В ходе наклона

Затем начинается наклон кюветы. В ходе наклона шарик накатывается на капли и переносит их на дно кюветы.

Моментальная конвергенция реагента и плазмы запускает измерительный процесс.

Шарик вращается в течение всего времени измерения. Когда начинается свертывание, вращающийся шарик приводит к связыванию образующих волокон фибрина. Этот эффект позволяет обнаружить начало образования мельчайших сгустков.

Функция шарика

В нормальных пробах шарик выполняет гомогенизирующую функцию. При бережном перемешивании плазмы с реагентом наблюдается улучшение воспроизводимости сигнала на детекторе.

В случае патологических проб динамика разности мутности между плазмой и образовавшимся в ней сгустком – очень высокая. Шарик, концентрируя сгусток, приводит к более быстрому детектированию начала процесса свертывания.

В случае низкого содержания фибриногена образующийся фибрин связывается с шариком, при этом происходит его центрирование в измерительной кювете. Это связывание вызывает быстрое осветление образца, что приводит к динамическому сигналу на детекторе.

Таким образом, оптико-механический метод обеспечивает высокую чувствительность измерений.

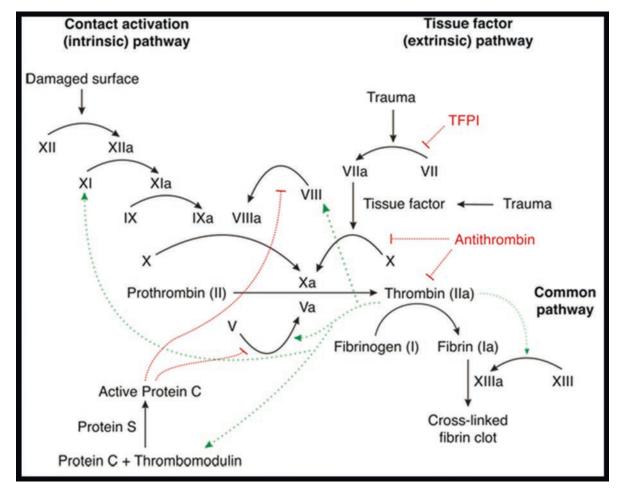
Преимущество оптико-механического метода в работе с мутными пробами

Оптико-механический метод обеспечивает не только повышенную точность измерений, но и дает возможность проводить коагулогические исследования в мутных образцах. Мутные образцы – это гемолизные, иктеричные и липемичные пробы, которые часто являются проблемой для проведения коагулогических исследований.

Анализаторы серии Thrombolyzer позволяют не отбраковывать пробы и не отправлять пациента на повторное взятие крови (тем самым не терять время до постановки диагноза и не тратить расходные материалы), а сразу выполнить исследования клоттинговых и хромогенных тестов. Это сильно экономит ресурсы лечебного учреждения.

Интерференционные образцы, измеренные на коагулометрах серии Thrombolyzer (www.behnk.de)

Peareнты Helena Biosciences Europe (Великобритания)


При выполнении коагулогических исследований точный результат анализа обеспечивается идеально настроенной аналитический системой анализатора с реагентом. Испытания на заводах производителей (Behnk Elektronik, Helena Biosciences Europe) и многолетний опыт работы пользователей доказали оптимальность системы анализаторов Behnk Elektronik с реагентами Helena Biosciences Europe.

Преимущества реагентов Helena:

- Готовые жидкие реагенты
- Высокая стабильность при выполнении исследований
- Длительное время хранения вскрытых реагентов
- Широкая панель тестов
- Наличие всех калибраторов и контролей
- Традиции безупречного английского качества

Схема гемостаза*

^{*} www.helena-biosciences.com

Панель тестов коагулометров Behnk Elektronik

Наименование теста	Thrombostat 1/2		Thrombotimer 1/2/4	Thrombolyzer CompactX/XR/ XRM	Контроли	Калибраторы
Образец	Цельная кровь	Плазма	Плазма	Плазма		
ПВ (+МНО)	5506	√ _{5267L}	✓ _{5267L}	√ _{5267L}	5186,5187	√ 5504R
АЧТВ		√ 5560SLQ	√ 5560SLQ	✓ _{5560SLQ}	√ 5186,5187	
ТВ		√ 5377	√ 5377	√ 5377	√ 5186,5187	√ 5185
Фибриноген		√ 5376R	√ _{5376R}	√ _{5376R}	5186,5187	
Фактор II			√ 5790	√ 5790	5301,5302	√ 5185
Фактор V			√ 5791	5791	5301,5302	√ 5185
Фактор VII			√ ₅₇₉₂	√ 5792	5301,5302	√ 5185
Фактор VIII			√ 5795	√ 5795	5301,5302	√ 5185
Фактор IX			√ 5794	√ 5794	5301,5302	√ 5185
Фактор Х			√ 5795	√ 5795	5301,5302	√ 5185
Фактор XI			√ 5796	√ 5796	5301,5302	√ 5185
Фактор XII			√ 5797	√ 5797	5301,5302	√ 5185
Д-Димер				√ 5501	√ 5509	
Антитромбин III				√ 5502	√ 5186,5302	√ 5185
Волчаночный Антикоагулянт				5484,5485	5186,5486	
Протеин С				5543	5301,5302	√ 5185
Резистентность к активированному Протеину С				5546	5301,5302	√ ₅₁₈₅
Протеин \$				5511	5301,5302	√ 5185
Плазминоген				\checkmark		
Гепарин				\checkmark		
Фактор XIII				\checkmark		
Фактор Виллебранда				\checkmark		

В таблице указаны каталожные номера реагентов Helena Biosciences Europe.

«Лучший путь предсказать будущее – это создать его»

Питер Друкер

121374, г. Москва, Кутузовский проспект, 88 mail@helicon.ru

8 800 770 71 21 www.helicon.ru

Филиалы:

ПРЕДСТАВИТЕЛЬСТВО В СИБИРСКОМ РЕГИОНЕ:

630090 г. Новосибирск, ул. Инженерная, д. 28 Тел.: +7 (383) 207-84-85 novosibirsk@helicon.ru

ПРЕДСТАВИТЕЛЬСТВО В СЕВЕРО-ЗАПАДНОМ РЕГИОНЕ:

195220 г. Санкт-Петербург, ул. Гжатская, д. 22, корп. 1 Тел.: +7 (812) 244-85-52 spb@helicon.ru

ПРЕДСТАВИТЕЛЬСТВО В ПРИВОЛЖСКОМ РЕГИОНЕ:

420021 г. Казань, ул. Татарстан, д. 14/59, оф. 201 Тел.: +7 (843) 202-33-37 volga@helicon.ru

ПРЕДСТАВИТЕЛЬСТВО В ЮЖНОМ РЕГИОНЕ:

344116 г. Ростов-на-Дону, ул. 2-ая Володарская, д. 76/23а Тел.: +7 (863) 294-87-66 rostov@helicon.ru