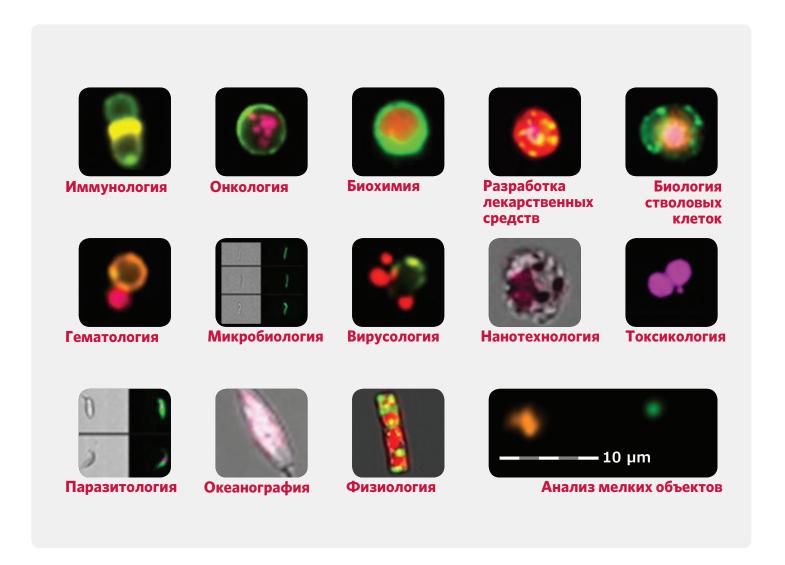


Проточные цитометры с визуализацией **Amnis**®

Проточная микроскопия



Объединяя исследовательские дисциплины в области Life Sciences

Микроскопия позволяет получать детальные изображения клеток и информацию о морфологии – полезные инструменты для изучения клеточных функций. Однако интерпретация таких изображений является субъективной, сложной и требующей определенных навыков.

Проточная цитометрия является отличным инструментом для количественного фенотипирования и получения статистики путем анализа огромного количества клеток.

При этом проточная цитометрия не позволяет получать изображения, что затрудняет локализацию сигнала и изучения внутриклеточных процессов. Сочетая скорость, чувствительность и возможности фенотипирования проточной цитометрии с возможностями детальной визуализации и функционалом микроскопа, Amnis® ImageStream®X Mk II и Amnis® FlowSight® обходят ограничения обеих технологий и открывают доступ к новейшим приложениям.

Amnis[®] FlowSight[®]

Проточный цитометр с визуализацией

Широкие возможности: любые области исследований

Чувствительность: специальная ССD-камера в качестве детектора намного превосходит разрешающую способность традиционных цитометров

Доступность: конфигурации для любых лабораторий и бюджетов

Мощь: характеризует популяции по параметрам изображений и флуоресценции

Высокая производительность: анализирует сотни

клеток с 60Х увеличением в секунду

Интуитивно понятный: простой интерфейс с возможностью работы с гистограммами

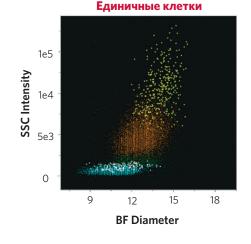
и регионами в реальном времени

Гибкий: возможность установить до 6 лазеров

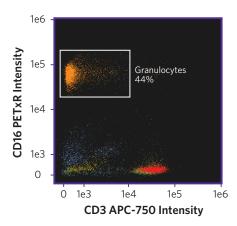
Широкие возможности: различные объективы для визуализации мелких частиц и крупных клеток

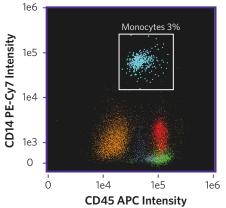
helicon.ru/amnis | 8 800 770 71 21 | ∗7550 **⑤** (звонок бесплатный)

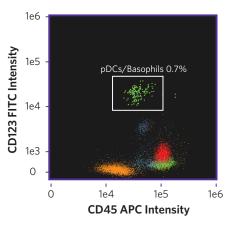
Мощная проточная цитометрия

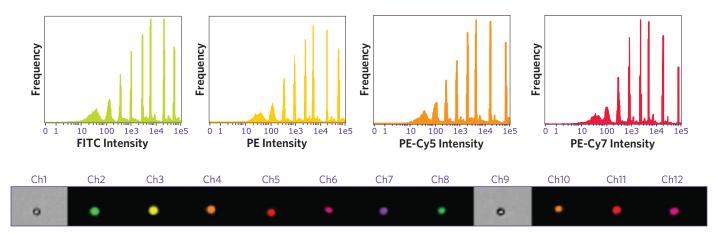

Системы ImageStream® $^{\circ}$ Mk II и FlowSight $^{\circ}$ позволяют получить до 10 изображений флуоресценции (Intensity) в разных каналах в дополнение к светлопольному (FSC) и темнопольному (SSC) изображениям. При 60X увеличении каждый пиксель изображения соответствует части клетки 0.3 $^{\circ}$ 0.3 мкм. При 40X увеличении - 0.5 $^{\circ}$ 0.5 мкм. Камера позволяет локализовать флуоресцентный сигнал на мембране, в цитоплазме, внутриклеточных органеллах и ядре. Система FlowSight $^{\circ}$ 8 имеет 20X увеличение с разрешением 1 $^{\circ}$ 1 мкм на пиксель.


Инновационный дизайн проточных цитометров Amnis® позволяет увеличить силу сигнала и уменьшить цифровой шум, обеспечивая исключительную чувствительность. Благодаря отдельному лазеру бокового светорассеяния, регулировке мощности лазеров и использованию светлопольных изображений для получения истинных значений клеточных размеров, Amnis® позволяет разделять популяции эффективнее чем более дорогие цитометры. Простота использования, высокая


производительность и анализ изображений каждой клетки, проходящей через область зондирования, удовлетворят потребности как новичков, так и экспертов в проточной цитометрии.


Больше чем просто прямое и боковое светорассеяния

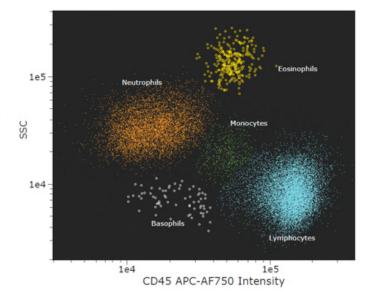

Традиционные цитометры позволяют оценить приблизительные характеристики размера и гранулярности объектов, используя параметры светорассеяния. Проточные цитометры $Amnis^{\text{®}}$ генерируют знакомые «FCS/SSC» гистограммы, но, благодаря наличию светлопольных изображений и увеличениям 20-40-60X, они могут измерять абсолютные размеры клеток. Например, длину, ширину, площадь, диаметр, периметр и пр.


Многоканальное иммунофенотипирование

Иммунофенотипирование, помимо светорассеяний, требует использования нескольких флуоресцентных каналов. Ниже приведён пример 6-ти цветного фенотипирования клеток переферической крови человека (PBMC) с антителами против CD3, CD4, CD14, CD16, CD45, и CD123, плюс DAPI. Расположение каналов детекции, доступные лазеры и мастер автоматической компенсации делают возможным простое разделение сложных клеточных популяций.

Чувствительность и гибкость для любых задач

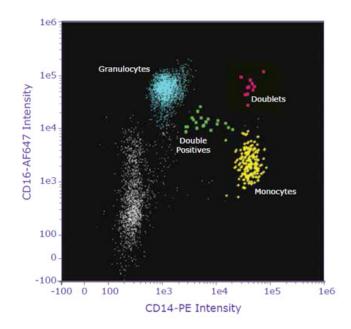
Исключительная флуоресцентная чувствительность


Запатентованная архитектура визуализирующих цитометров Amnis® обеспечивает беспрецедентную чувствительность во всем видимом спектре, оставляя позади прочие системы визуализации и проточной цитометрии. Четыре диаграммы ниже демонстрируют возможности FlowSight® по разделению всех 8-и пиков калибровочных частиц Spherotech по всему спектру от FITC до PE-Cy7. Обратите внимание на четкие разделения пиков, низкие коэффициенты вариации и высокую чувствительность во всех каналах.

Визуализация частиц Spherotech 8-peak Rainbow диаметром 3 микрона в 12 каналах FlowSight®.

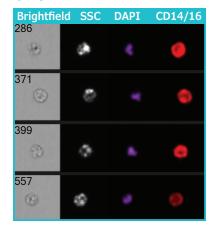
Разделение лейкоцитов

Преимущества высокой чувствительности видны при работе со смешанными субпопуляциями в гетерогенных образцах. Клетки периферической крови человека (РВМС) разделяются на 5 четких популяций на основе оценки экспрессии CD45 и бокового светорассеяния. Высокая флуоресцентная чувствительность, низкий коэффициент вариации, позволяют отделить моноциты (зеленые) от лимфоцитов (синие) и упрощают детекцию редких базофилов (белые). Отдельный лазер бокового рассеяния позволяет разделить эозинофилы (желтные) и нейтрофилы (оранжевые).

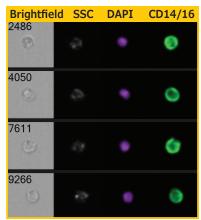


Чувствительность и гибкость для любых исследований

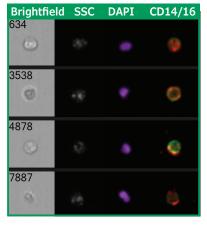
Изображения каждой клетки

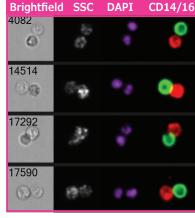

Приборы FlowSight® и ImageStream®х Mk II работают как обычные проточные цитометры, но при этом дают возможность получения изображений каждой клетки. Мощное программное обеспечение для анализа связывает количественные данные о популяциях клеток с изображениями клеток:

- Нажмите на любую точку двумерной гистограммы, чтобы увидеть соответствующее изображение клетки.
- Нажмите на столбец на одномерной гистограмме, чтобы увидеть все входящие в него клетки.
- Выделите регион на двумерной гистограмме и проверьте соответствующую популяцию.



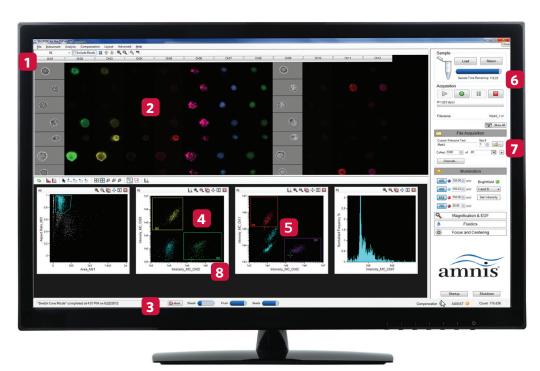
С использованием визуализации Вам не придется гадать о природе аномальных событий или правильности установки гейтов, как показано на примере выше. После установки гейта, Вы можете проверить попадающие и не попадающие в него события, чтобы определить правильно ли он установлен, как показано на рисунке справа. Имея визуальное подтверждение, Вы всегда можете оптимизировать размер, форму и положение гейта для получения более качественных данных.


Гранулоциты


Моноциты

Двойные позитивные

Дублеты

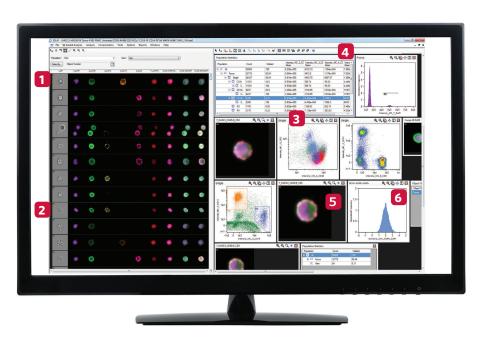

Программное обеспечение для сбора данных

Быстрое и интуитивно-понятное

Программное обеспечение INSPIRETM позволяет осуществлять гейтирование на основе изображений и проводить компенсацию в реальном времени.

- **1. Мгновенный обзор популяций:** после установки региона все популяции можно выбрать и просмотреть в специальном меню. Выберите интересующую Вас популяцию из списка и просматривайте клетки по мере их сбора.
- **2.** Галерея изображений: изображения клеток появляются в галерее по мере сбора данных. Это позволяет оценить морфологию и степень прокрашивания различных областей клеток, а также настроить мощность лазеров.
- **3. Проверка состояния прибора:** легко читаемые шкалы, индикаторы и текстовые сообщения позволяют непрерывно контролировать состояние инструмента.
- **4. Компенсация в реальном времени:** простой в использовании мастер проведет Вас через весь процесс создания матрицы компенсации.
- **5. Гейтирование без догадок:** удобные инструменты для создания регионов и их визуальной оценки на основании анализа изображений.
- **6. Эффективное использование образца:** использование образа до 95%, упрощает анализ редких клеток. Неиспользованный образец можно вернуть обратно.
- **7. Простой сбор данных:** простой, интуитивно понятный интерфейс программного обеспечения дает полный контроль над настройками параметров сбора и хранения данных.
- **8. Знакомые гистограммы и точечные графики:** данные с графиков обновляются в реальном времени, как и в традиционных цитометрах. В отличии от традиционных цитометров Вы также можете строить графики морфологических параметров, например, площади, ширины клетки, высоты клетки, коэффициента сжатия

ΠΟ INSPIRE™



Объективная интерпретация

Программное обеспечение IDEAS® объединяет анализ изображений, работу со статистикой и визуальное подтверждение в одном программном пакете

- **1. Инспектируйте популяции:** галерея изображений позволяет увидеть изображения каждой клетки или провести «виртуальную сортировку» инспектируя и подтверждая клетки в рамках выбранной популяции.
- **2. Изображения каждого события:** каждая точка на диаграммах соответствует изображениям клетки. Просто нажмите на точку, чтобы увидеть соответствующие изображения или наоборот.
- **3. Инструменты для выделения популяций:** создавайте новые популяции с помощью традиционных инструментов и объединяйте их использую логические функции И, ИЛИ, НЕ.
- **4. Расширенная статистика по популяции:** возможность оценки популяции с помощью широкого набора статистических параметров, чтобы подчеркнуть различия в морфологии, фенотипе и функциях.
- **5. Инструменты для работы с изображениями:** комбинируйте изображения, окрашивайте в подходящие цвета для более представительного вида в публикациях и отчетах.
- **6.** Переведите изображения в статистику: все, что Вы видите в галерее изображений может быть представлено в виде гистограмм и графиков. Для каждой клетки генерируются десятки параметров, включая интенсивность флуоресценции, локализацию флуоресценции, форму клетки, текстуру клетки и массу других морфологических и фотометрических характеристик.

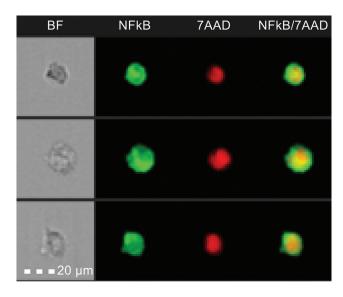
Широкий спектр приложений

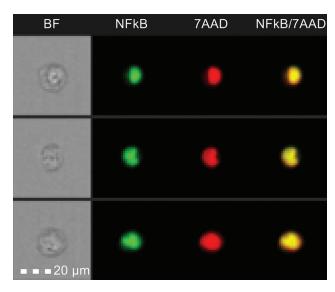

Любые приложения, которые Вы можете себе представить

Рекомендуемые приложения

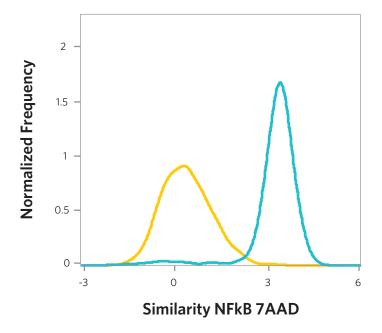
Описанные ниже приложения показывают типы исследований, которые Вы можете проводить используя $ImageStream^{@x}$ Mk II и $FlowSight^{@}$ вместе с мощным программным комплексом для анализа изображений $IDEAS^{@}$.

Любые приложения, которые Вы можете себе представить

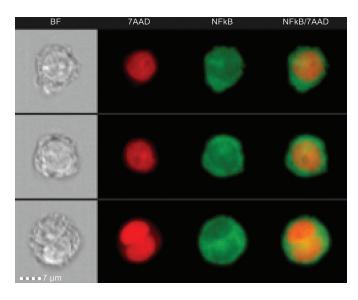

ImageStream $^{\otimes X}$ Mk II и FlowSight $^{\otimes}$ Systems разработаны для широкого применения и их использование не ограничено задачами, указанными в данной брошюре.

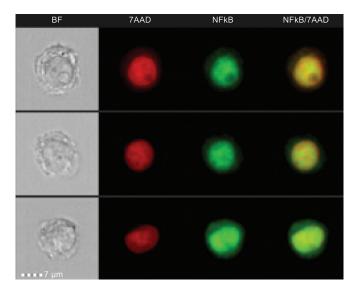

Подсчет степени ядерной транслокации...

История, рассказанная при 20Х увеличении

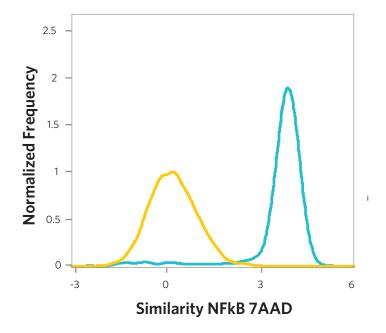

Транслокация NFkB из цитоплазмы в клеточное ядро является ключевым событием клеточного ответа на присутствующие «раздражители». Только цитометрия с визуализацией позволяет количественно подсчитать степень транслокации одновременно у тысяч клеток. Для получения такой информации используется 20X объектив системы FlowSight®. Система локализует NFkB и флуоресцентный сигнал 7-AAD в ядрах клеток THP-1, стимулированных и нестимулированных LPS. С помощью характеристики Similarity (Подобие) в программе IDEAS® для каждой клетки подсчитывается степень колокализации NFkB и 7-AAD.

THP-1 Control (no LPS)
Mean similarity score = 0.4


THP-1 + 1 μ g/mL LPS Mean similarity score = 3.2


...с помощью характеристики «подобие»

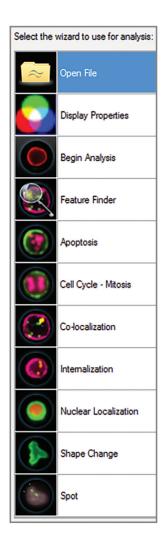
Более детальный взгляд на сигнализацию NFkB с 60X увеличением

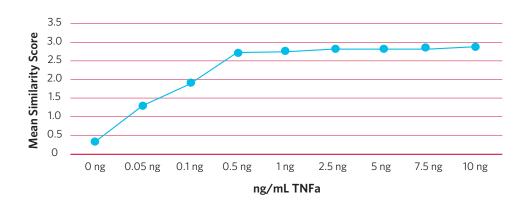

He стимулированные и стимулированные LPS клетки THP-1, окрашенные anti-NFkB и ядерным красителем 7-AAD, собрали на ImageStream $^{\otimes X}$ Mk II с 60X увеличением. Характеристика Подобие (Similarity) программного обеспечения IDEAS $^{\otimes}$ демонстрирует эквивалентность данным, полученным на FlowSight $^{\otimes X}$, и задает уровень детализации, который можно получить с помощью ImageStream $^{\otimes X}$ Mk II для задач, которым это требуется.

THP-1 Control (no LPS) Mean similarity score = 0.2

THP-1 Control (no LPS) Mean similarity score = 3.8

Спектральные каналы изображений Amnis®

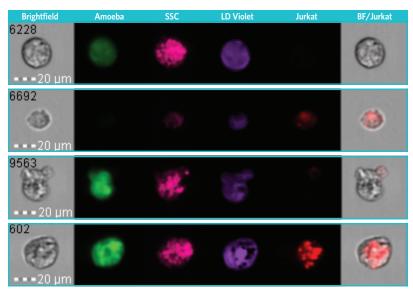

Laser	Fluorophore	Ex	Em	- ¤-	Fluorophore	Ex	Em	<u>-</u> ;¢-	Fluorophore	Ex	Em	- <u>\</u>	
375 (with installed 405)	CH 1 Ch1/Ch9 BF *or* Alexa Fluor® 350 BV421™ Cascade Blue DAPI Hoechst Pacific Blue	346 405 377 345 352 410	442 421 420 461 455 455	5	QD525	CH 2 350-450	525	5	eFluor565 NC QD565 QD585	CH 3 UV - 405 350-450 350-450	565 565 585	2 5 5	
488	BRIGHTFI	ELD			Alexa Fluor® 488 BODIPY FI DiO DyLight™ 488 FITC GFP/EGFP LysoTracker Green MitoTracker Green PKH2 & PKH67 Rhodamine 110 SYBR® Green Syto13 (DNA/RNA)	496 503 484 493 494 475/488 504 490 490 496 494 488D/491R 514	514 512 501 518 520 509 511 516 504 520 521 509D/514R 527	3 3 3	Cy3 DSRed PE RFP	514 557 496,565 555	566 592 578 584	1 1 5 2	
561									Alexa Fluor® 546 CellMask/Tracker DiI DSRed DyLight™550 Nile Red PE PKH26 Spectrum Orange Sytox Orange	556 522 549 557 562 515-530 496,565 551 559 547	573 535 565 592 576 525-605 578 567 588 570	3 3 5	
785 Ch width	435-480)				480-560			5	60-595		_	
Bandpass*	(457/45				(528/65)				(577/35)				
375 (with 405 not installed)	CH 7 Alexa Fluor® 350 BV421™ Cascade Blue DAPI	346 405 377 345	442 421 420 461	1 5 1	eFluor525 NC QD525	CH 8 UV - 405 350-450	525 525	1 5	CH 9				
- not instance)	Hoechst Pacific Blue	352 410	455	1									
405	Hoechst Pacific Blue Alexa Fluor® 405 BV421® Cascade Blue CFP DAPI DyLight™405 Hoescht LIVE/DEAD Violet Pac Blue	410 402 405 377 435 345 400 352 416	455 455 421 421 420 485 461 420	1 1 5 1 2 1 1	Alexa Fluor® 430 BV510™ Cascade Yellow Pacific Orange Pacific Orange QD525	434 405 402 410 410 350-450	541 510 545 551 551 525	1 3 1 1 1 5					
	Pacific Blue Alexa Fluor® 405 BV421® Cascade Blue CFP DAPI DyLight™405 Hoescht LIVE/DEAD Violet	410 402 405 377 435 345 400 352 416	455 455 421 421 420 485 461 420 455 451	1 1 5 1 2 1 1	BV510™ Cascade Yellow Pacific Orange Pacific Orange	405 402 410 410	510 545 551 551	3 1 1 1	BRIG	GHTFIELD			
405	Pacific Blue Alexa Fluor® 405 BV421® Cascade Blue CFP DAPI DyLight™405 Hoescht LIVE/DEAD Violet	410 402 405 377 435 345 400 352 416	455 455 421 421 420 485 461 420 455 451	1 1 5 1 2 1 1	BV510™ Cascade Yellow Pacific Orange Pacific Orange	405 402 410 410	510 545 551 551	3 1 1 1	BRIG	GHTFIELD			
405 592 642	Pacific Blue Alexa Fluor® 405 BV421® Cascade Blue CFP DAPI DyLight™405 Hoescht LIVE/DEAD Violet	410 402 405 377 435 345 400 352 416	455 455 421 421 420 485 461 420 455 451	1 1 5 1 2 1 1	BV510™ Cascade Yellow Pacific Orange Pacific Orange	405 402 410 410	510 545 551 551	3 1 1 1	BRIG	SHTFIELD			
405 592 642	Pacific Blue Alexa Fluor® 405 BV421® Cascade Blue CFP DAPI DyLight™405 Hoescht LIVE/DEAD Violet	410 402 405 377 435 345 400 352 416 410	455 455 421 421 420 485 461 420 455 451	1 1 5 1 2 1 1	BV510™ Cascade Yellow Pacific Orange Pacific Orange	405 402 410 410	510 545 551 551	3 1 1 1		GHTFIELD			


ИС	001	гве	T	ствую	цие	фл	19	opoxp	ОМЬ	I		ht®	ImageStream ^{x®} Camera 1	ImageStream ^{x®} Camera 2
Fluorophore	Ex	Em	\	Fluorophore	Ex	Em	☆	Fluorophore	Ex	Em	<u>-</u> ;;-	FlowSight®	nageS ımera	nageS mera
eFluor625 NC	CH 4 UV - 405	625	5	eFluor700 NC	CH 5 UV - 405	700	1	QD800	CH 6 350-450	800	5	Ĕ	iii	50
QD625	350-450	625	5	QD705	350-450	705	5	(2000	330 130		3		•	
AldeRed	488	615		7-AAD	546	647	3	PE-Alexa Fluor® 750		775	3			
PE-Alexa Fluor® 610 PE-Texas Red®(ECD)	496,565 496 565	630 613	3 2	DRAQ5 FuraRed-lo	646 472	697 657		PE-Cy7	496,565	774	4			
RFP	555	584	2	LDS751	543	712								
				PE-Alexa Fluor® 647 PE-Cy5	496,565 496,565	669 670	5							
				PE-Cy5.5	496,565	690	3					•	•	
				PerCP PerCP-Cy5.5	482 482	675 690	2 3							
				PI	535	617								
Alexa Fluor® 568	578	603	3	7-AAD	546	647	5	PE-Alexa Fluor®750	•	775				
DyLight™594 PE-Texas Red®(ECD)	593 496,565	618 613	2	DRAQ5 LDS751	646 543	697 712		PE-Cy7	496,565	774	4			
PE-Alexa Fluor®610	496,565	628	5	PE-Alexa Fluor® 647	496,565	669	5							
RFP mCherry*	555 587	584 610	4 4	PE-Cy5	496,565	670	4					•		
59	95-642				542-745				SSC 745-780			Ch	n wid	th
(6	10/30)				702/85)				(762/35)				ndpas	
	CH 10				CH 11				CH 12					•
eFluor625 NC QD625	UV- 405 350-450	625 625		eFluor650 NC QD705	UV- 405 350-450	650 705	5 5	QD800	350-450	800	5			
												•		•
Alexa Fluor® 594	590	617	2											
DyLight™594 mCherry	593 587	618 610	1											
Texas Red®	595	603	5											
				Alexa Fluor® 647 Alexa Fluor® 660	650 663	668 690	5 2	APC-Alexa Fluor® 7: APC-Cy7	50 650 650	774 774	2			
				APC	645	660	5	APC-eFluor750	633	750	4			
				Cy5 DiD	650 644	670 665	2	APC-H7 Cy7	652 743	785 767	3	•		•
								eFluor780			J			
				DRAQ5	646	697			753	785	2			
				DRAQ5 DyLight™650	646 655	697 670		PE-Cy7	496,565	774	4			
														•
								PE-Cy7 Alexa Fluor® 750	496,565 749 743 75 4	774 775	4			•
59	95-642			DyLight™650				PE-Cy7 Alexa Fluor® 750 Cy7	496,565 749 743	774 775 767	4	Ch	n wid	•

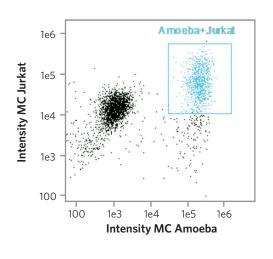
Количественный анализ изображений клеток и мощная статистика популяции

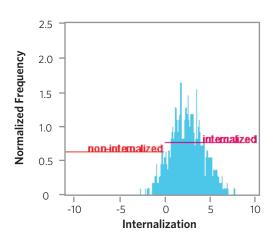
QI (Quantitative Imaging) обозначает наличие в проточных цитометрах с визуализацией мощной функции обработки изображений используя тысячи параметров для анализа и простые алгоритмы для приложений, которые непосредственно связаны с обработкой изображений – ядерная транслокация, изменение формы, интернализация и апоптоз.

Объективному QI анализу большого количества клеток сопутствует большой набор статистических параметров, используемых при создании отчетов.



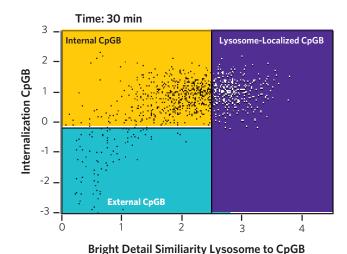
File	Count All	Count Focus	Count Singles	Count Positive	Mean Similarity	Std Dev Similarity
TNFa_0ng_2_2016.daf	10000	4903	4265	3740	0.34	0.71
TNFa_0-05ng_3_2016.daf	10000	4621	4060	3635	1.28	0.81
TNFa_0-1ng_4_2016.daf	10000	4280	3739	3365	1.90	0.82
TNFa_0-5ng_5_2016.daf	10000	4861	4167	3516	2.68	0.66
TNFa_1ng_6_2016.daf	10000	3811	3311	2910	2.72	0.63
TNFa_2-5ng_7_2016.daf	10000	3893	3425	3070	2.80	0.58
TNFa_5ng_8_2016.daf	10000	4162	3685	3180	2.80	0.52
TNFa_7-5ng_9_2016.daf	10000	4361	3782	3387	2.82	0.58
TNFa_10ng_10_2016.daf	10000	4005	3456	2988	2.90	0.55

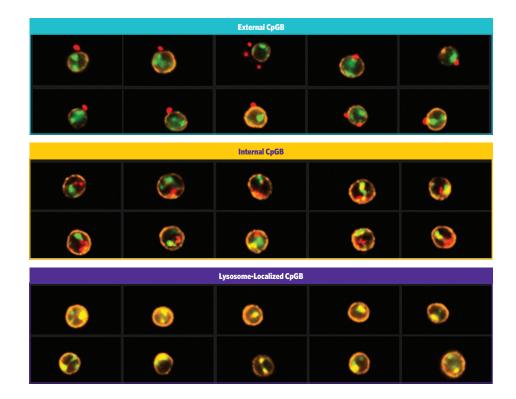

Идентификация трогоцитоза с помощью интернализации


20Х объектив для более широкого поля зрения

Проточный цитометр FlowSight® оптимален для получения изображений больших объектов, таких как эпителиальные клетки, макрофаги, нейтрофилы, фибробласты и даже для анализа крупных паразитов в эукариотах. Ниже приведен пример трогоцитоза иммунных клеток паразитом Entamoeba histolytica. Отслеживая их связывание с клетками Jutkat, прибор измеряет каждую E. Histolytica, экспрессирующую маркер Jurkat – поверхностный или интернализованный.

Data courtesy of Dr. Katherine Ralston, UC Davis.





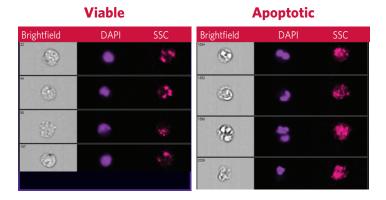
Колокализация и транспорт

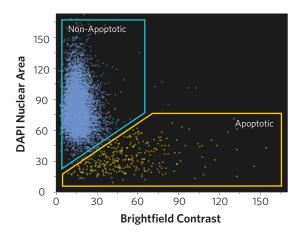
Совмещая высокую скорость сбора большого количества изображений клеток с объективным измерением параметров Similarity и Bright Image Details, ImageStream^{®X} Mk II сильно упрощает изучение колокализации.

Пример: интернализация и транспорт CpGB в первичных плазмоцитоидных дендритных клетках.

Лизосомальный транспорт CpGB в pDC определяется путем подсчета значений Internalization (ось Y) и Bright Detail Similarity (ось X). Наложение изображений нижнего левого региона, pDC (оранжевое), CpGB (красное) и лизосом (зеленое), полученных при 40X показывают поверхностно-связанный CpGB.

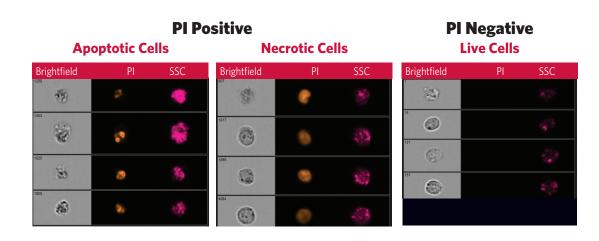
По мере того как комплексы CpGB интернализируются в pDC, значение Internalization растет (верхний левый регион). После транспортировки CpGB в лизосомы, параметр Similarity между парой изображений CpGB и лизосомой увеличится (верхний правый регион).


Данные предоставлены Dr. Patricia Fitzgerald-Bocarsly, University of Medicine and Dentistry, New Jersey


Апоптоз и некроз

Определение апоптоза и некроза по анализу изображений

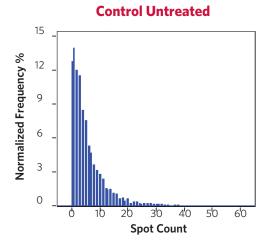
Мастер анализа апоптоза анализирует морфологию ядра и контраст светлопольного изображения каждой клетки, определяя апоптоз в любом образце, где есть ядерный краситель.

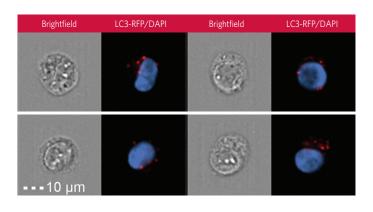

Дифференцировка апоптотичных и некротических клеток путем измерения текстуры изображения DAPI.

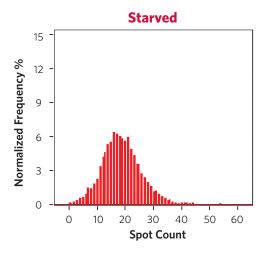

Некроз или апоптоз

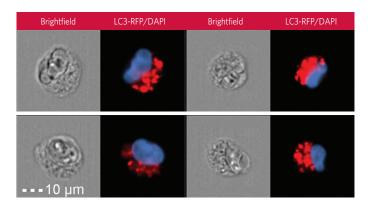
Традиционные цитометры используют мембрано-непроницаемые красители для определения мертвых и умирающих клеток с нарушенной целостностью мембраны. Однако определения пути гибели (апоптоз или некроз) в некоторых случаях может быть весьма затруднительно. Система FlowSight® сильно упрощает такое определение благодаря анализу морфологии ядра в каждой клетке. Как показано в данном примере с клетками THP-1, меченными PI, ядро некротических клеток имеет нормальную форму, тогда как ядра апоптотичных клеток фрагментированы и деформированы.

Аутофагия

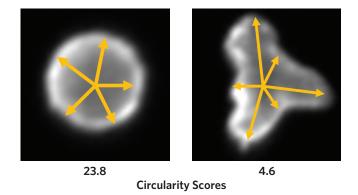

При аутофагии экспрессируется особоый цитоплазматический белок LC3, который собирается на поверхности аутофагосом. Клетки с аутофагией можно идентифицировать с помощью визуализации включений LC3 и подсчета внутриклеточных спотов для каждой клетки, используя характеристику Spot Count в программном обеспечении IDEAS®.

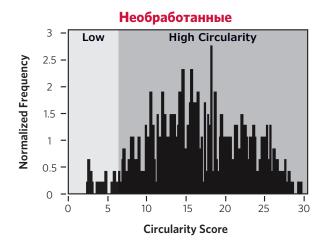


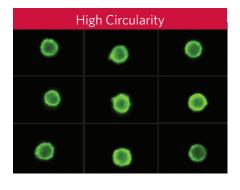

Программное обеспечение для обработки изображений $IDEAS^{\circ}$ определяет количество спотов в каждой клетке. В данном примере клетки с различным количеством LC3-RFP (красный) включений показаны в соответствии с подсчитанной характеристикой Spot Count.

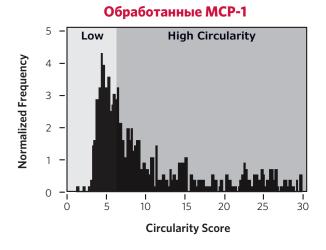

Пример: аутофагия в линии человеческих клеток остеосаркомы U2OS

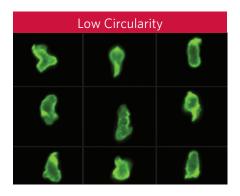
Репортерную линию остеосаркомы человека U2OS RFP-LC3 подвергли голоданию в течение 4-х часов при 37C. И к контролю, и к образцам добавляли ингибитор деградации.



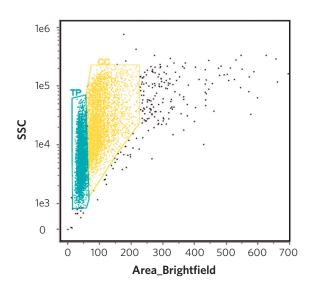

Морфология

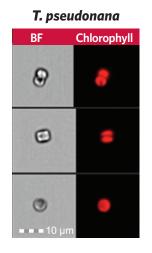

Изменение формы клетки является следствием изменения ее функций, в особенности активации макрофагов, дифференцировки стволовых клеток и клеточного ответа на лекарственные воздействия. С помощью встроенных в программное обеспечение IDEAS® характеристик ImageStream®X Mk II может измерять степень изменения формы. Одной из таких характеристик является Circularity, которая оценивает степень изменения радиуса. Круглые клетки (слева) имеют более высокое значение Circularity, тогда как клетки с необычной формой (справа) – меньшее.

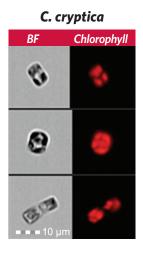



Пример: изменение формы первичных моноцитов.

Хемоаттрактант MCP-1 индуцирует изменение формы моноцитов и их миграцию к очагам воспаления, что характеризуется существенным снижением параметра Circularity в клетках, обработанных MCP-1 по сравнению с необработанным контролем. И напротив – уменьшение воспалительного ответа, например, лекарством против аутоиммунных заболеваний, приводит к увеличению параметра Circularity.

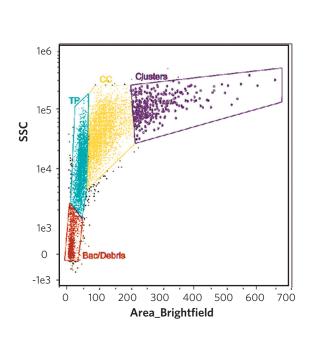


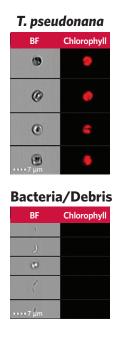


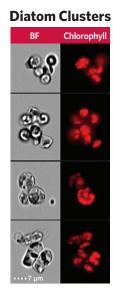

Микроводоросли

Смешанные культуры водорослей

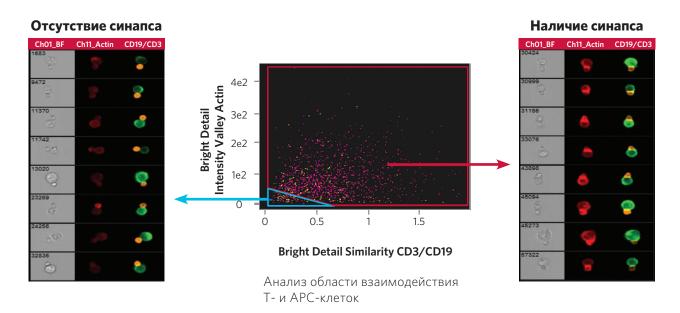
Изображения ниже, полученные на ImageStream $^{\otimes X}$ Mk II с увеличением 40X, демонстрируют разделение микроводорослей в смешанной культуре, используя морфологические параметры.

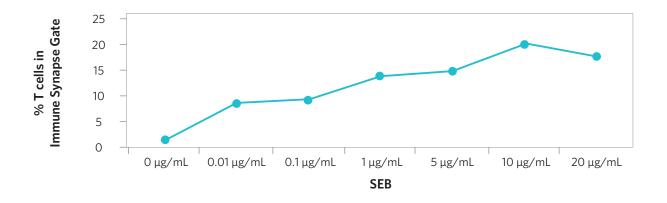





Контроль качества микроводорослей

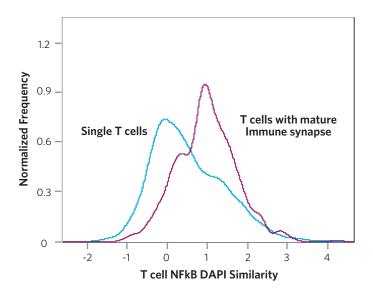
Изображения ниже, полученные на ImageStream $^{\otimes X}$ Mk II с увеличением 60X, демонстрируют бактериальную контаминацию, клеточные осколки и агрегаты водорослей в смешанной культуре T. pseudonana и C. cryptica.



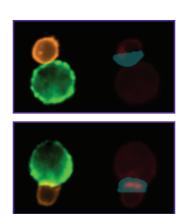


Иммунологические синапсы и межклеточное взаимодействие

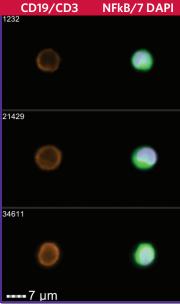
Изображения FlowSight® 20X


Дозозависимый эффект **SEB**

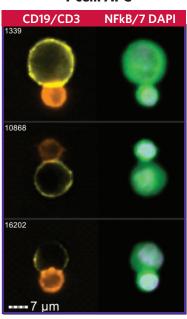
В клетки Raji, обработаны SEB (0-20 $\mu g/mL$) и инкубированы с первичными T-клетками человека


Высокое разрешение для углубленного анализа

- Определение конъюгатов Т:АРС используя морфологические характеристики.
- Определение области межклеточного взаимодействия используя маску (фиолетовая гистограмма).
- Аккумуляция актина внутри маски подтверждает образование синапса.
- Определение всех Т-клеток, образовавших конъюгаты.
- Подсчет степени транслокации NFkB в Т-клетках.



Изображения 60X ImageStream®X Mk II


Наложение маски (бирюзовый) показывает идентификацию синапса

Single T cells 19/CD3 NFkB/7 DA

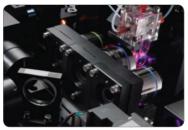
T cell: APC

Возможные опции

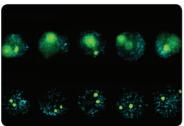
FlowSight® µ ImageStream®X Mk II

Возможные опции

Лазер 488 нм устанавливается по умолчанию в обоих приборах. Установка дополнительных лазеров расширяет возможности экспериментов и добавляет возможность использовать более широкий спектр флуорохромов. Для всех лазеров доступна регулировка мощности.


12 каналов детекции

До 12 каналов получения изображений высокого разрешения доступны после установки дополнительной камеры в системе ImageStream $^{@X}$ Mk II. Для системы FlowSight $^{@}$ 12 каналов стандартного разрешения доступны в базовой комплектации.


Автосэмплер

Установка автосемплера увеличивает производительность благодаря возможности собирать образцы из 96-и луночных планшетов без присутствия оператора. Незаменим в дозо- и время зависимых экспериментах.

Опция MultiMag

MultiMag открывает доступ к дополнительным объективам 20X и 60X в дополнение к стандартному объективу 40X, установленному на ImageStream $^{\otimes X}$ Mark II 60X объектив позволяет получать изображения высокого разрешения для анализа таких объектов как бактерии и дрожжи, в то время как объектив 20X расширяет поле зрения до 120 микрон для исследования крупных объектов.

EDF: Расширенная глубина резкости

Опция EDF – интеграция технологии кодирования волнового фронта от компании OmniVision CDM Optics, включающей особые оптические компоненты и уникальные алгоритмы обработки изображений. EDF позволяет вывести все клеточные структуры в одну фокальную плоскость. Подходит для автоматизации подсчета спотов FISH и gH2AX и микроядер.

Опции	FlowSight [®]	ImageStream ^{®X} Mk II			
Дополнительные лазеры	Стандартный 488 Опционально 405, 561, 642	Стандартный 488 Опционально высоко мощный 488, 375, 405, 561, 592, 642, и 730			
12 каналов детекции	Стандартно	Стандартно 6 каналов высокого разрешения 12 каналов опционально			
Автосэмплер	96-ти луночный	96-ти луночный			
MultiMag	Стандартно 20Х	Стандартно 40X, Опционально 20 и 60X			
EDF: Расширенная глубина резкости	Не доступно	Опционально			

Прогрессивная инженерия...

Спецификация FlowSight®

Характеристики	Увеличение 20 Х
Числовая апертура	0.6
Размер пикселя	1.0 х 1.0 мкм
Поле зрения	60 х 256 мкм
Скорость записи	4,000 клеток/сек

Проба

- Объем 20-200 мкл
- Использование образца до 95%

Автоматизация

- Запуск и выключение
- Подача образца и сбор данных
- Выравнивание лазеров, фокусировка, калибровка, самодиагностика

Дополнительные требования

- 400 Вт, 100-240В, 50/60 Гц
- Не требует дополнительной подводки воды или газа

Размеры

- 457 mm x 465 mm x 635 mm
- 161 кг

Оптика

- **Лазеры** стандартный 488 нм, опциональные: 405 нм, 561 нм и 642 нм
- **Боковое светорассеяние** стандарт 785 нм, опционально: 405 нм, 561 нм и 642 нм
- Светлое поле многоканальное

...продвинутые возможности

Спецификация ImageStream®X Mk II

V	Увеличение						
Характеристики	60X	40X	20X				
Числовая апертура	0.9	0.75	0.5				
Размер пикселя	0.3 х 0.3 мкм	0.5 х 0.5 мкм	1.0 х 1.0 мкм				
Поле зрения	40 х 170мкм	60 х 128 мкм	120 х 256 мкм				
Скорость записи	1,200 клеток/сек	2,000 клеток/сек	5,000 клеток/сек				

Проба

- Объем 20-200 мкл
- Использование образца до 95%

Автоматизация

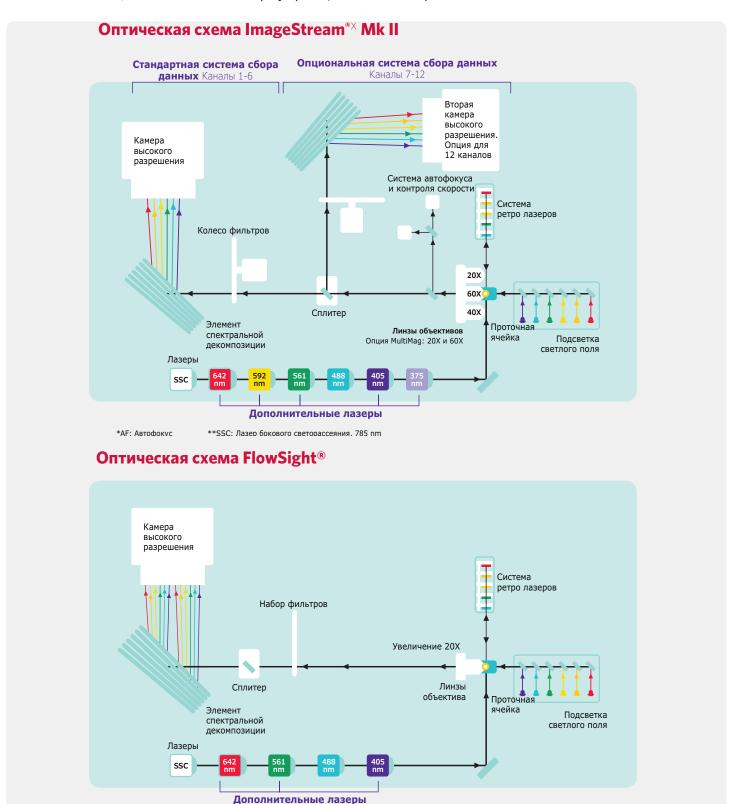
- Запуск и выключение
- Подача образца и сбор данных
- Выравнивание лазеров, фокусировка, калибровка, самодиагностика

Оптика

- **Лазеры** стандартно 488 нм; опционально: высокомощный 488, 375 нм, 405 нм, 561 нм, 592 нм 642 нм, и 730 нм
- **Боковое светорассеяние** стандартно 785 нм, опционально: высокомощный 488, 375 нм, 405 нм, 561 нм, 592 нм, 642 нм, и 730 нм
- Светлое поле многоканальное

Дополнительные требования

- 450Вт, 100-240 В, 50/60 Гц
- Не требует дополнительной подводки воды или газа


Размеры

- 889 mm x 660 mm x 635 mm
- 182 кг


Путь к научному просвещению...

... лежит через элемент спектральной декомпозиции, позволяющий одновременно собрать светлопольные, темнопольное и флуоресцентные изображения клеток.

Информация для заказа

Наименование	Каталожный номер
Приборы	
Проточный цитометр с визуализацией Amnis® FlowSight®	100370
Проточный микроскоп Amnis® ImageStream®X Mk II	100220
Реагенты	
Amnis® ImageStream® SpeedBead® Kit	400041
Калибровочные частицы FlowSight®	400300
Наборы	
Набор для исследования транслокации NFkB Amnis®	ACS10000
Набор для детекции белковых аггрегатов и силиконовых масел $\operatorname{Amnis}^{\circ}$	APH10001
Набор для внутриклеточного окрашивния Amnis®	ACS10002
Сервисные планы	
План ImageStream®X Mk II Complete	SLA-ISXMkII-COMPLETE
План ImageStream®X Mk II Basic	SLA-ISXMkII-BASIC
План FlowSight® Complete	SLA-FS-COMPLETE
План FlowSight® Basic	SLA-FS-BASIC
Опции обучения	
Обучение ImageStream ^{®X} Mk II training at Luminex, 3 дня - за человека	5020
Обучение Onsite ImageStream *X Mk II или FlowSight * – на месте FAS 1 день – до 5 человек	50200-1
Onsite ImageStream ^{®X} Mk II or FlowSight [®] training - FAS 2 дня – до 5 человек	50200-2
Onsite ImageStream ^{®X} Mk II or FlowSight [®] training - FAS 3 дня – до 5 человек	50200-3
Onsite ImageStream ^{®X} Mk II or FlowSight [®] training - FAS 4 дня – до 5 человек	50200-4
Onsite ImageStream ^{®X} Mk II or FlowSight [®] training - FAS 5 дней – до 5 человек	50200-5

Номер подключен на сетях операторов МТС, Билайн, Мегафон и Теле2

000 «КОМПАНИЯ ХЕЛИКОН»

121374, г. Москва Кутузовский проспект, д. 88 Тел.: +7 (499) 705-50-50 mail@helicon.ru

8 800 770 71 21 бесплатный звонок по России **www.helicon.ru**

helicon.ru/amnis